【摘要】针对临床上重症疾病样本数量少容易导致预后模型过拟合、预测误差大、不稳定的问题,本文提出迁移长短时程记忆算法(transLSTM)。该算法基于迁移学习思想,利用疾病间的相关性实现不同疾病预后模型的信息迁移,借助相关疾病的大数据辅助构建小样本目标病种有效模型,提升模型预测性能,降低对目标训练样本量的要求。transLSTM算法先利用相关疾病数据预训练部分模型参数,再用目标训练样本进一步调整整个网络。基于MIMIC-Ⅲ数据库的测试结果显示,相比传统的LSTM分类算法,transLSTM算法的AUROC指标高出0.02~0.07,AUPRC指标超过0.05~0.14,训练迭代次数仅为传统算法的39%~64%。应用于脓毒症疾病的结果显示,仅100个训练样本的transLSTM模型死亡率预测性能与250个训练样本的传统模型相当。在小样本情况下,transLSTM算法预测精度更高、训练速度更快,具有显著优势。它实现了迁移学习在小样本重症疾病预后模型中的应用。
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《广西广播电视大学学报》 2015-07-01
《现代制造技术与装备》 2015-07-02
《铁道运营技术》 2015-06-25
《重庆高教研究》 2015-06-30
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点